Synthesis of Iron Oxide Nanoparticles using Borohydride Reduction

نویسندگان: ثبت نشده
چکیده مقاله:

Iron oxide (Fe2O3) nanoparticles were synthesized by a simple approach using sodium borohydride (NaBH4) and Iron chloride hexahydrate (FeCl3.6H2O). Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern showed that the iron oxide nanoparticles exhibited rhombohedral structure and gamma-Fe2O3 (maghemite) to alpha-Fe2O3 (hematite) structural phase transition in nanocrystals. The particle size of α-Fe2O3 was around 28 nm in diameter as estimated by XRD technique. The surface morphological studies from SEM depicted spherical particles with formation of clusters by increasing annealing temperature. The EDS spectrum showed peaks of iron and oxygen free of impurity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

synthesis of iron oxide nanoparticles using borohydride reduction

iron oxide (fe2o3) nanoparticles were synthesized by a simple approach using sodium borohydride (nabh4) and iron chloride hexahydrate (fecl3.6h2o). their physicochemical properties were characterized by high resolution transmission electron microscopy (hrtem), scanning electron microscopy (sem), x-ray diffraction (xrd) and electron dispersive spectroscopy (eds). xrd pattern showed that the iron...

متن کامل

Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxid...

متن کامل

Synthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment

The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...

متن کامل

Synthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment

The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...

متن کامل

Synthesis and Characterization of Iron Oxide Nanoparticles by Thermal Decomposition Method of Iron (III) Chelates

   Magnetic iron oxide nanoparticles have numerous applications in the biomedical field. This paper reports the preparation and properties of iron oxide nanoparticles synthesised by thermal decomposition method from iron chelates. The iron oxide nanoparticles were characterized by FTIR, powder XRD, VSM, SEM and TEM techniques. FTIR and powder XRD studies show that iron oxide was fo...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 4

صفحات  203- 206

تاریخ انتشار 2014-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023